An Overview of Translationally Informed Treatments for Posttraumatic Stress Disorder: Animal Models of Pavlovian Fear Conditioning to Human Clinical Trials

Mallory E. Bowers and Kerry J. Ressler

ABSTRACT
Posttraumatic stress disorder manifests after exposure to a traumatic event and is characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive disruptions, and hyperarousal/reactivity symptoms. These symptoms reflect dysregulation of the fear system likely caused by poor fear inhibition/extinction, increased generalization, and/or enhanced consolidation or acquisition of fear. These phenotypes can be modeled in animal subjects using Pavlovian fear conditioning, allowing investigation of the underlying neurobiology of normative and pathological fear. Preclinical studies reveal a number of neurotransmitter systems and circuits critical for aversive learning and memory that have informed the development of therapies used in human clinical trials. In this review, we discuss the evidence for a number of established and emerging pharmacotherapies and device-based treatments for posttraumatic stress disorder that have been developed via a bench to bedside translational model.

Keywords: Antidepressant, Cannabinoid, D-Cycloserine, Exposure, Extinction, Fear, Glucocorticoid, Hydrocortisone, Morphine, Opioid, Propranolol

http://dx.doi.org/10.1016/j.biopsych.2015.06.008

Posttraumatic stress disorder (PTSD) manifests after exposure to a traumatic event and is characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive disruptions, and hyperarousal/reactivity symptoms (1). An event is considered traumatic if it involves exposure to death, threatened death, actual or threatened serious injury, or actual or threatened sexual violence. The estimated lifetime prevalence of PTSD in the United States is between 7% and 9% (2).

Data suggest that 94% of individuals who experience trauma develop acute PTSD-like symptoms (2,3). For most, these symptoms will abate over time. Some hypothesize that increased generalization and deficits in extinction underlie symptomatology of PTSD. Additionally, enhanced acquisition and consolidation of trauma-related fear may also precipitate the development of PTSD. Animal studies using Pavlovian fear conditioning and extinction paradigms offer insight on the neurobiology of these fear-related dimensions, allowing identification of functional circuitry and molecular signaling pathways critical for normative and pathological fear (Figure S1 in Supplement 1 and a detailed review of the neurobiology of Pavlovian fear conditioning and validity as a model of PTSD).

Through these preclinical studies, researchers have identified the amygdala, interacting critically with the hippocampus and medial prefrontal cortex (mPFC), as the primary anatomical loci of fear learning and extinction (4–6). Furthermore, manipulations of various transmitter systems during different phases of aversive learning point to a number of potential pharmacotherapies and specific treatment windows. Based on preclinical indications, pilot and large-scale clinical studies have now been conducted on a number of treatments with a variety of administration protocols, e.g., chronically administered in the immediate aftermath of trauma, in conjunction with exposure therapy, or during reconsolidation. Additionally, researchers are exploring the efficacy of device-based treatments for PTSD and PTSD-like symptoms in humans and rodents, given the success of deep brain stimulation (DBS) for the treatment of depression (7).

In this review, we explore established and emerging treatment strategies for PTSD that are supported by preclinical and clinical data. Although the number of approved treatments is small, with selective serotonin reuptake inhibitors (SSRIs) as the only class of drug approved for treatment of PTSD, exciting new evidence points to a number of promising pharmacotherapies and device-based treatments with a variety of treatment protocols.

PHARMACOTHERAPY APPROACHES TO FEAR- AND ANXIETY-RELATED DISORDERS
The following sections review preclinical and clinical evidence for a variety of established and emerging pharmacotherapies,
especially focusing on underlying transmitter and receptor systems, as well as targeted brain regions. In discussing the preclinical data, we focus on outlining evidence from studies of cued and contextual fear conditioning but include discussion of evidence from alternative fear and anxiety paradigms where relevant.

Serotonin/Selective Serotonin Reuptake Inhibitors

Use of SSRIs in PTSD stems from the observed efficacy of SSRIs for depression and the high incidence of depression comorbid with anxiety and PTSD (8). SSRI efficacy in the treatment of depression contributes to the previously accepted biogenic amine hypothesis, which postulates that disturbances in serotonin, dopamine, and norepinephrine underlie the pathology of depression (9–13).

Similarly, evidence from rodent and human studies implicates brain serotonin systems in the neurobiology of PTSD (14–16). The amygdala, hippocampus, and frontal cortex—areas with a demonstrated role in PTSD—receive serotonergic input via projections from the dorsal and median raphe nucleus (17–19). A recent meta-analysis supports an association between the lesser expressing, short allele of 5-HTTLPR (serotonin transporter gene) and PTSD in high-trauma exposed individuals (20). Conclusions from positron emission tomography (PET) analysis are consistent with this model, where individuals with PTSD exhibit reduced amygdala serotonin transporter protein binding (14). Additional PET studies observe an association between early trauma exposure and serotonin type 1B receptor binding, as well as higher serotonin 1A binding in PTSD; however, these findings have not been uniformly replicated (21–23).

Several studies find increased cued fear acquisition and expression in rodents and humans with acute SSRI administration (24–26). An effect on cued fear acquisition and expression may be mediated by the serotonin 2A receptor, as administration of a serotonin 2A receptor agonist after fear conditioning increases cued fear expression (27), and administration before extinction enhances within-session extinction (27). Similarly, serotonin 2A receptor antagonist administration blocks cued fear acquisition (28).

Conversely, chronic SSRI administration impairs fear learning, in particular cued fear acquisition and extinction (29). However, chronic fluoxetine may also prevent return of extinguished fear and facilitate extinction in female rats (30–32). Ultimately, an effect of chronic SSRI administration on extinction, as well as SSRI efficacy for treatment of depression and PTSD, may be driven by a change in glutamatergic transmission, as supported by recent D-cycloserine (DCS) and ketamine findings.

Somewhat consistent with rodent preclinical data, several studies indicate that outcomes for individuals treated with SSRIs and cognitive behavioral therapy (CBT) outcomes may be worse compared with CBT alone (33–35). Other studies report comparable or modest benefits with combinational treatment (36–42). While a 2008 report from the Institute of Medicine concludes that SSRIs, among other all other classes of drugs, do not demonstrate efficacy in the treatment of PTSD, a recent meta-analysis supports the efficacy of long-term treatment of PTSD with SSRIs (43). While some suggest that SSRIs are as effective as psychotherapy as a first-line treatment, others recommend SSRIs as a second-line treatment after CBT (41); clearly, further investigation of SSRIs is needed (44).

N-Methyl-D-Aspartate Acid/D-Cycloserine

In combination with cognitive behavioral therapy, D-cycloserine—a compound that acts as a partial agonist at the strychnine-insensitive glycine-recognition site of the N-methyl-D-aspartate receptor—has helped the field consider targeted pharmacologic augmentation of psychotherapy. In rodents, systemic or intra-amygdala administration of DCS has repeatedly been shown to facilitate extinction of fear-potentiated startle and cued freezing in rats (45–48). Furthermore, DCS blocks increases in freezing caused by reinstatement but has no effect on renewal processes (49,50). DCS is thought to act on consolidation of emotional learning, as posttraining administration of DCS similarly facilitates extinction (45). Importantly, DCS reverses deficits in fear extinction caused by the single prolonged stress model that is hypothesized to more thoroughly instantiate PTSD-like symptoms and the accompanying underlying pathology (51,52). Similarly, DCS enhances extinction in 129S1/SvImJ, an alternative genetic mouse model of PTSD that exhibits persistent impairment of fear extinction (53).

In humans, DCS shows promise for the treatment of social anxiety, obsessive-compulsive disorder, panic disorder, acrophobia, and nicotine dependence (54–59). Data on efficacy of DCS in the modulation of associative fear learning and treatment of PTSD, however, are mixed. In healthy human volunteers, DCS facilitates consolidation of fear acquisition of previously neutral cues and cued fear extinction (60,61). Other studies have also not observed a reduction in conditioned fear with administration of DCS (62–64). For individuals with PTSD, DCS seems particularly effective when administered with virtual reality exposure (65,66). Some studies have not reported increased remission with DCS compared with placebo (when administered in combination with cognitive behavioral therapy) (67,68). Despite inconsistencies in the literature, meta-analyses suggest that DCS enhances fear extinction/exposure therapy in both animal and human subjects (69,70).

The current consensus is that its effects are modulated by a number of factors. DCS yields greater reductions in PTSD symptoms in subjects with more severe pretreatment PTSD (71). Furthermore, participants with high conscientiousness and low extraversion exhibit better outcomes with DCS and exposure therapy compared with placebo (72). DCS also appears to selectively enhance exposure therapy when administered with successful sessions (73). This effect is reflected in rodent models, where subjects who exhibit successful within-session extinction show better long-term extinction with DCS (47,74). These data suggest that DCS may be an efficacious adjunctive therapy but only for a subset of the clinical population and with specifically tailored CBT sessions, among other factors (75,76). Despite its limitations, DCS has been an important molecule in moving the field forward to directly addressing mechanisms of emotional learning from a translational perspective based on a behavioral neuroscience understanding of rodent emotion processing.
Glucocorticoids/Hydrocortisone

Under normative conditions, stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis causes an increase in the release of the adrenal hormone cortisol (corticosterone in rodents). Increased cortisol mobilizes biological resources needed to engage the flight or fight response to promote survival. These stress-related increases in cortisol eventually inhibit HPA axis activity to terminate the stress response. Chronic or extreme stress, however, can contribute to HPA axis dysregulation and a host of other adverse effects (77,78).

HPA axis dysregulation is observed in individuals with PTSD, where low baseline levels of cortisol [although higher levels or no differences are observed as well (79–82)] and enhanced negative feedback in response to dexamethasone are reported (83–88). Prospective studies suggest that low cortisol in the face of trauma is a predisposing factor for the development of PTSD (87,89–92). One hypothesis is that reduced cortisol signaling alters normal adaptive responses of the autonomic nervous system, including negative feedback to the pituitary and hypothalamus to terminate the stress response (93). Specifically, low cortisol could impede cortisol homeostasis, contributing to an inability to contain the stress response and resulting in runaway fear characteristic of PTSD.

A number of investigators have developed animal models that more thoroughly instantiate PTSD-like symptoms and replicate HPA axis alteration. These approaches suggest that glucocorticoid system manipulations in healthy models, where the corticosterone response is adaptive, might be different from PTSD-like models, where corticosterone responses may be maladaptive. Importantly, these studies report that animals exposed to extreme stress exhibit poor fear extinction, greater acoustic startle, more anxiety-like behavior, and heightened fear expression, as in humans with PTSD (94–102).

For example, Lewis rats, which are more susceptible to PTSD-like behavior, do not exhibit an increase in circulating corticosterone several days after stressor exposure compared with other strains that are less vulnerable (95). Mice and rats exposed to extreme stress exhibit enhanced negative feedback in response to acute stress or cortisol (103–106). In other studies, however, subjects that exhibit PTSD-like behavior in response to extreme stress have increased circulating levels of corticosterone several days after stressor exposure compared with well-adapted and nonexposed rats (96,107,108). Furthermore, other studies have found that baseline corticosterone before stressor exposure does not predict subsequent behavioral responses to extreme stress (95,109). Conflicting HPA axis activity findings in PTSD-like models may reflect a problem of whether these models recapitulate PTSD and/or depression, similar to the problem seen in clinical studies where PTSD is often comorbid with depression.

PTSD-like models have also allowed researchers to test the hypothesis that glucocorticoid administration in the face of extreme stress might contain the stress response and prevent the development of PTSD-like effects. Indeed, acute pharmacologic intervention with corticosterone after stress is able to rescue PTSD-like behavioral effects (95,102,110,111). This is now being tested in humans. As in rodent models, administration of hydrocortisone during a critical window after trauma is shown to reduce the risk of PTSD development (112–114). In humans, administration of hydrocortisone in combination with traumatic memory reactivation reduces PTSD symptoms (115), and greater patient retention is observed in treatment groups with hydrocortisone administered in combination with prolonged exposure therapy (116). Glucocorticoid modulation may also enhance extinction for other fear-related disorders besides PTSD, as seen in successful reduction of fear in combination with exposure therapy for social phobia, spider phobia, and phobia of heights (117,118). These studies suggest that glucocorticoid modulation enhances extinction memory, in line with preclinical evidence implicating the glucocorticoids in memory consolidation (119,120). It may also acutely reduce fear (118), as seen with daily hydrocortisone reducing re-experiencing and avoidance symptoms of PTSD (121).

Though promising, there remain some inconsistencies in the HPA modulation field, consistent with the human literature, where the development of an extreme behavioral response to trauma is associated with an increase or decrease in circulating levels of glucocorticoids. Prospective studies evaluating glucocorticoid levels at baseline and in response to a stressor before and after trauma across species would be the most informative.

Opioids/Morphine

Along with marijuana and alcohol, opiates are one of the most commonly abused substances among individuals with PTSD, indicating that aberrant endogenous opioid signaling may underlie PTSD (122). In rodents, administration of opioid antagonists increase conditioned fear by enhancing fear acquisition or blocking fear extinction (123–125). Conversely, morphine (opioid receptor agonist) administration blocks conditioned fear acquisition in normal and prior-stress models (126,127). Opioid signaling in ventrolateral periaqueductal gray matter regulates conditioned fear extinction, potentially via activation of the mPFC and the basolateral nucleus of the amygdala (128,129).

Research addressing specificity of opioid regulation of conditioned fear implicates the mu (μ) and kappa (κ) opioid and nociceptin/orphanin FQ receptors. Antagonism of the μ opioid receptor facilitates contextual fear conditioning (130) and blocks extinction of cued fear (131). Similarly, antagonism of the κ opioid receptor blocks conditioned fear on a fear-potentiated startle paradigm (132,133). In PTSD-like rodent models, differential levels of cerebrospinal fluid NOP/orphanin FQ and nociceptin/orphanin FQ receptor messenger RNA are observed (134,135). Furthermore, NOP/orphanin FQ receptor agonist administration blocks contextual and cued fear consolidation in normal and PTSD-like rodent models (135–137).

In humans, genetic analysis reveals a significant interaction between the OPRL1 (opioid receptor-like 1) gene and childhood trauma that is associated with PTSD and neural correlates of PTSD (135). Similarly, other studies suggest that a polymorphism in the OPRM1 gene (opioid receptor μ1) is associated with less severe PTSD symptoms (138). Regarding specific PTSD-related symptoms, κ opioid receptor availability in the amygdala–anterior cingulate cortex–ventral striatal circuit mediates the expression of dysphoria where lower κ opioid receptor is associated with greater severity of trauma-related loss symptoms (139).
Interestingly, some evidence suggests that morphine may be effective for secondary prevention of PTSD. Children administered morphine after acute burns exhibit decreased PTSD symptoms months to years after treatment in a dose-dependent fashion (140–142). Studies of traumatized adults administered morphine mirror results found in pediatric data sets (143). Prospective studies find that patients who meet criteria for PTSD at 3 months posttrauma received significantly less morphine acutely after injury (144). Data from healthy volunteers, where opioid agonists inhibit and antagonists promote fear acquisition, support the hypothesis that morphine administration in the immediate aftermath of trauma may prevent the development of PTSD by inhibiting the acquisition of fear in response to trauma (145,146), consistent with above data in rodents (126,127).

A critical alternative explanation may be that a reduction in pain caused by morphine administration is able to mitigate the development of PTSD. This hypothesis is supported by several reports that pain after trauma is significantly associated with later development of PTSD (144,147,148). Nonetheless, previous and ongoing studies suggest that the effects on PTSD buffering may be independent of pain. Further prospective studies are needed to more safely establish morphine’s efficacy as a secondary preventative therapy. Concomitant pain monitoring, or comparison with nonopioid analgesics, will help determine the mechanism by which morphine may prevent the development of PTSD.

Cannabinoids/Nabilone/Delta-9-Tetrahydrocannabinol

Overwhelming evidence from rodent models suggests that the endocannabinoids are critically involved in stress, fear, and anxiety (149,150). Knockout or antagonism of Cnr1 increases anxiety-like behavior on a number of different paradigms across a variety of species (149,151,152). Increased synthesis of the endocannabinoids and subsequent activation of Cnr1 in the amygdala is thought to mediate fear extinction in mice and rats, potentially via inhibition of the anxiogenic neuropeptide cholecystokinin and/or modulation of the gamma-amino butyric acidergic system (151,153,154). Additionally, Cnr1 is critical for acquisition, retrieval, and extinction of both cue and context fear, as well as reconsolidation of cued fear memory (153,155–157). Cnr1 involvement in cued fear involves thought to be mediated primarily by the amygdala and mPFC (154,156,157). Furthermore, the endocannabinoid system is implicated in stress and stress-sensitization of fear behavior, where Cnr1 is thought to modulate glutamatergic and gamma-aminobutyric acidergic signaling primarily in the bed nucleus of the stria terminalis, the basolateral amygdala, and the central amygdala (158–164). Administration of a Cnr1 agonist acutely after shock prevents PTSD-like symptoms in rats, suggesting that cannabinoid drugs might be administered acutely after trauma to prevent development of PTSD (163).

Evidence implicating Cnr1 involvement in stress, fear, and anxiety in rodent models has stimulated investigation of Cnr1 involvement in PTSD and fear processes in humans. Studies suggest delta-9-tetrahydrocannabinol (Δ9-THC) facilitates extinction of conditioned fear in healthy human volunteers (84,165). As mentioned, PTSD diagnosis is significantly associated with greater marijuana use, indicating that Δ9-THC is used as a form of self-medication to compensate for cannabinoid system dysregulation (166). In fact, several genetic association studies reveal specific Cnr1 and FAAH (fatty acid amide hydrolase, an anandamide degradative enzyme) allelic risk factors for threat processing, anxiety, extinction, stress coping, and PTSD (167–170). Furthermore, PET studies suggest that individuals with PTSD have increased brain Cnr1 availability, possibly due to changes in peripheral levels of the endocannabinoids (171–173). Although the data are preliminary, several studies show that cannabinoid receptor agonists, including nabilone and Δ9-THC, improve insomnia, subjective chronic pain, nightmares, and other symptoms related to PTSD (174–177). While these studies suggest that chronic administration of Cnr1 agonists can improve general mood and symptoms related to PTSD, more studies are needed to address the role of the cannabinoid system in memory processes, as they relate to PTSD and traumatic memory consolidation. As the cannabinoids are implicated in primary consolidation, extinction, and reconsolidation across rodents and humans, it is of great interest to determine an effect, if any, of drugs targeting the cannabinoid system on PTSD development and treatment when administered during trauma consolidation, in combination with exposure therapy and/or traumatic memory reactivation.

Norepinephrine/Propranolol/Yohimbine

Researchers and clinicians hypothesize that hyperconsolidation of trauma and/or poor extinction might contribute to development of PTSD. Given the vast amount of data implicating the noradrenergic/norepinephrine (NE) system in memory consolidation, some suggest that noradrenergic dysfunction might underlie pathology of PTSD, in particular, deficits in fear acquisition and extinction, as well as symptoms of hyperarousal (179,180). Indeed, multiple studies find evidence of abnormal noradrenergic function in PTSD (181–185).

In rodents, stress-induced release of NE into the amygdala, specifically the basolateral nucleus of the amygdala, is critical for emotional memory consolidation (186). Although numerous studies implicate NE, via β-adrenergic receptors, in consolidation of aversive memory (inhibitory avoidance learning, in particular), the role of NE in associative fear learning is less clear (179,187). Studies find evidence of noradrenergic activity in consolidation of associative fear learning and extinction (188–194). Others, however, report that treatment with NE or propranolol, a β-adrenergic receptor antagonist, has no effect on consolidation of auditory fear learning. Furthermore, propranolol administration significantly impairs auditory fear acquisition (whereas, treatment with an α1-adrenergic receptor antagonist facilitates fear acquisition) (195–197).

Interestingly, noradrenergic signaling is critical for reconsolidation of fear learning across multiple paradigms (197–199). Reconsolidation involves transiently rendering memories labile through memory reactivation (200). Through this reactivation (and as in the primary consolidation phase), memories undergo a stabilization process that is sensitive to protein-synthesis inhibitors. Propranolol administered systemically or intra-amygdala blocks reconsolidation of cue and context fear...
conditioning (197,198). Intra lateral amygdala (LA) infusion of isoproterenol, a β-adrenergic receptor agonist, enhances reconsolidation, blocking extinction of cued fear (201). Similarly, yohimbine, an α2-adrenergic receptor antagonist that increases release of norepinephrine from the locus coeruleus, enhances reconsolidation, whereas clonidine, an α2-adrenergic receptor agonist, blocks reconsolidation of conditioned fear (194,202,203).

Additionally, studies in healthy human subjects support a role for norepinephrine in memory consolidation. Propranolol attenuates responses to aversively conditioned stimuli and memory for emotionally arousing stories when administered during the consolidation window (204–206). Memory retrieval, however, is not impaired by propranolol (207,208).

As the noradrenergic system is implicated in PTSD and, more generally, in memory consolidation processes, drugs that target the noradrenergic system are being tested for their efficacy in blocking primary consolidation or reconsolidation of traumatic memory, or alternatively, strengthening extinction of traumatic memory in individuals with PTSD and other anxiety disorders. Studies show that propranolol administration in the immediate aftermath of trauma might be effective at secondary prevention of PTSD, as rates and symptoms of PTSD are lower over a period of weeks to months posttrauma in individuals who receive propranolol (209–211). However, a recent double-blind pilot study in children finds weak evidence for a decrease in PTSD symptoms in boys acutely administered propranolol but an increase in symptoms in similarly treated girls (212).

Increasingly, research is examining the effect of propranolol on reconsolidation to weaken the strength of emotional salience of traumatic memory. Propranolol administration with trauma reactivation decreases physiological responses, such as heart rate and skin conductance, during subsequent mental imagery of the event (213). In separate studies, propranolol administered in combination with six brief trauma reactivation sessions significantly improves PTSD symptoms compared with placebo (214). Several other studies report improvement of PTSD symptoms with propranolol treatment; however, dosage and administration are either unknown or not reported (215,216). Notably, there are a number of negative trials across rodents and humans examining an effect of propranolol on reconsolidation (198,208,217). While a meta-analysis suggests that propranolol blocks primary consolidation and reconsolidation of long-term emotional memory in healthy humans, inconsistencies in the propranolol literature will benefit from a similar analysis examining individuals with PTSD (218).

New evidence indicates that modulation of the noradrenergic system may be able to facilitate exposure therapy. Individuals with social anxiety disorder and claustrophobia exhibit better outcomes when administered yohimbine in conjunction with exposure sessions, compared with outcomes in individuals administered placebo plus exposure (219,220). An additional study, however, found no effect of yohimbine on extinction of fear of flying using virtual reality (221). Further study, specifically examining an effect on extinction in individuals with PTSD, is needed to more confidently assess therapeutic efficacy of yohimbine.

DEVICE-BASED TREATMENTS

Increasingly, researchers are investigating device-based treatments to alter pathological brain activity and connectivity in psychiatric disease. A number of different stimulation tools—including DBS, vagus nerve stimulation, transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS)—are under investigation and each are at various stages of development and testing at the preclinical and clinical levels (222,223). Similar to traditional pharmaceutical drugs, device-based treatments are being tested in combination with Pavlovian fear conditioning to determine efficacy in the treatment of PTSD.

Relative to other device-based treatments, DBS is the most extensively studied therapy with a comparatively large amount of evidence accumulated supporting efficacy in the treatment of psychiatric disorders. DBS is demonstrably efficacious for the treatment of Parkinson’s disease, its original indication, and is now being investigated for the treatment of depression, obsessive-compulsive disorder, and PTSD (7,222,224–226). At the preclinical level, several studies find enhanced cued fear extinction with DBS of the ventral striatum that may be mediated by enhanced brain-derived neurotrophic factor expression (53,227,228). Others find decreased PTSD-like symptoms and cued fear expression in rats with DBS of the amygdala (229–231). Based on these studies, participants are now being recruited to evaluate the efficacy of DBS targeting the amygdala for the treatment of PTSD (224). Because the mechanism of action is still relatively unclear (i.e., whether DBS activates or inhibits targeted brain regions), future preclinical studies are important for the interpretation and thus refinement of DBS and DBS treatment protocols.

Additionally, transcranial magnetic stimulation shows promise for the treatment of psychiatric disorders, where non-invasive electrical current is delivered via a magnetic coil placed on the scalp (232). In combination with a brief trauma re-exposure with script-driven imagery and in combination with exposure therapy, TMS of mPFC ameliorates PTSD symptoms when administered repetitively over 2 weeks (233–235). These studies, along with evidence that tDCS of the dorsolateral prefrontal cortex modulates consolidation of cued fear, underline the importance of mPFC in fear learning, which has been extensively studied in rodents (6,236,237).

While the efficacy of device-based treatments for PTSD is still being evaluated in preclinical and clinical studies, largely in combination with classical Pavlovian fear extinction/exposure therapy, DBS, vagus nerve stimulation, tDCS, and TMS may be viable treatment options, particularly for individuals with treatment-resistant PTSD.

DISCUSSION

We have examined the evidence regarding efficacy of some specific treatment strategies for PTSD informed by rodent preclinical studies. We have focused on Pavlovian fear conditioning and extinction experiments in animals, which allow researchers to model aversive learning processes that may underlie development of PTSD in response to trauma, as well as extinction of pathological fear via exposure therapy. Even in prior stress models, which are thought to more thoroughly...
Translationally Informed Treatments for PTSD

According to one hypothesis, hydrocortisone normalizes low cortisol, thought to be a risk factor for PTSD, to contain the stress response and maintain homeostasis (93). In line with evidence from preclinical models, hydrocortisone, D-cycloserine, yohimbine, and deep brain stimulation, in combination with exposure therapy, appear to enhance extinction (53,69,70,115–118,219,220,227,228). Alternatively, traumatic fear memory may be rendered labile through brief reactivation via reconsolidation. Propranolol shows some promise in improving PTSD symptoms by blocking reconsolidation processes (218), although these studies require replication.

In surveying the literature, we make several tentative conclusions about the current status and future of treatment strategies for PTSD. First, the time surrounding trauma may be a target window for administering treatment. However, since not all persons who experience trauma will develop PTSD, there is the question of whether resilient individuals should receive treatment. Clinical trials investigating the efficacy of secondary preventatives, such as opiates or hydrocortisone in the aftermath of trauma, may benefit from a better understanding of pretrauma risk factors that predispose individuals to PTSD. At this stage, the use of secondary preventatives might be best for administration after trauma in known high-risk populations.

Additionally, the window surrounding exposure therapy may be the best time for administering adjunctive therapies, as exposure therapy is the gold standard treatment for PTSD. Drug or device-based treatment in combination with exposure therapy may allow real-time assessment of its success. This is critical, as short exposure therapy sessions or sessions where individuals insufficiently inhibit fear can limit the effectiveness of adjunctive treatment or, worse, strengthen traumatic fear memory (73). Thus, a better approach may focus on therapies administered after individual exposure therapy sessions, allowing clinicians to assess the potential success of the therapy session before administering the adjunctive treatment.

Although it is clear that rodent models inform clinical studies, the traditional bench to bedside translational paradigm has shifted. Pharmacotherapies currently being tested in humans, stemming from rodent studies using Pavlovian fear conditioning paradigms, are being further developed in their original model systems to safely refine 1) dosages, 2) targeted molecular epitopes, and 3) treatment windows. In the case of SSRIs or DBS, for instance, rodent models are now being developed on the basis of findings from human studies. In another shift away from the traditional preclinical to clinical translation model, more studies are now focusing on the effects of specific treatments on intermediate phenotypes—such as amygdala activation using functional magnetic resonance imaging or fear inhibition—rather than overall symptoms of PTSD. These types of studies will increase with the establishment of Research Domain Criteria by the National Institute of Mental Health, a move that emphasizes the classification of psychiatric disorders based on behavioral dimensions and neurobiological measures.

While the number of approved treatments for PTSD is minimal and research appears to be moving away from the traditional translational model, fear conditioning and extinction may still offer hope for the development of new therapies, as this model is among the best-validated in psychiatric research.
Through these models, researchers and clinicians have established efficacious treatment strategies and are beginning to develop a number of promising pharmacotherapies and device-based treatments for PTSD.

ACKNOWLEDGMENTS AND DISCLOSURES
Support was provided by National Institutes of Health (T32-GM08605, 1F31MH097397, and R01MH096764), the Burroughs Wellcome Fund, and by an National Institutes of Health/National Center for Research Resources base grant (P51RR001065) to Yerkes National Primate Research Center.

Dr. Ressler is a founding member of Extinction Pharmaceuticals/Therapade Technologies to develop D-cycloserine, a genetically available compound, for use to augment the effectiveness of psychotherapy. He has received no equity or income from this relationship within the last 5 years. Dr. Bowers reports no conflicts of interest.

ARTICLE INFORMATION
From the Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences (MEB, KJR), and Howard Hughes Medical Institute (KJR), Emory University, Atlanta, Georgia.

Address correspondence to Kerry J. Ressler, M.D., Ph.D., Emory University, Investigator, Howard Hughes Medical Institute, 954 Gatewood Dr, NE, Atlanta, GA 30329; E-mail: kressle@emory.edu.

Received Oct 28, 2014; revised May 7, 2015; accepted Jun 2, 2015.

Supplementary material cited in this article is available online at http://dx.doi.org/10.1016/j.biopsych.2015.06.008.

REFERENCES

31. Lebron-Milad K, Tsareva A, Ahmed N, Milad MR (2013): Sex differences and estrous cycle in female rats interact with the effects of...

Translational Informed Treatments for PTSD

Transitionally Informed Treatments for PTSD

Translationally Informed Treatments for PTSD

